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Abstract. Generic Langevin equations are almost always given as first-order stochastic ordinary differential
equations for the phase space variables of a system, with noise and damping terms in the equation of
motion of every variable. In contrast, Langevin equations for mechanical systems with canonical position
and momentum variables usually include the noise and damping forces only in the equations for the
momentum variables. In this paper we derive Langevin equations and associated Fokker-Planck equations
for mechanical systems that include noise and damping terms in the equations of motion for all of the
canonical variables. The derivation is done by comparing a distinctive derivation of a phase space Fokker-
Planck equation, given by Langer, to the usual derivation relating Langevin equations to their associated
Fokker-Planck equations. The resulting equations have simple reductions to overdamped and underdamped
limits. They should prove useful for numerical simulation of systems in contact with a heat bath, since
they provide one additional parameter that can be used, for example, to control the rate of approach to
thermal equilibrium. The paper concludes with a brief description of the modification of Kramers’ result
for the escape rate from a metastable well, using the new form of the Fokker-Planck equation obtained
here.

PACS. 05.20.-y Classical statistical mechanics – 02.50.Ey Stochastic processes – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion

1 Introduction

A familiar form of the Langevin equations of motion
(EOMs) for a system of particles with N degrees of
freedom is

Mẍi = Fi({x})−Mγ(2)ẋi + ν
(2)
i (t), i = 1, · · · , N. (1)

Here xi(t) is a Cartesian component of the position at
time t of a particle which has mass M , and Fi({x}) is a
component of the deterministic force acting on the parti-
cle; it is a function of the position of the other particles.
γ(2) is a damping constant [with dimensions of (time)−1],
and ν

(2)
i (t) is a component of a random force acting on

the particle; only statistical information is known about
this function. (The superscripts are included for later con-
venience.)

The form of the above EOM might constrain one to
think solely within the configuration space of the sys-
tem, labeled by the variables {x} = (x1, x2, · · · , xN ).
Here we want to expand our perspective to phase space,
so we rewrite these EOMs in terms of both momentum

a e-mail: wck@wfu.edu

and displacement

ẋi =
pi
M
,

ṗi = Fi({x})− γ(2)pi + ν
(2)
i (t). (2)

Now we recall that at least part of the motivation both
for introducing (generalized) momentum variables and for
combining them with the position variables to construct
phase space is to be able to consider the positions and
momenta on an identical footing. Then a much larger
class of variable transformations (canonical transforma-
tions) becomes available for use in solving the EOMs. If
the deterministic force in equations (2) is obtained from a
potential energy Φ, as Fi = −∂Φ/∂xi, then the determin-
istic pieces of equations (2) are just Hamilton’s equations,
which do treat the positions and momenta in an equiv-
alent way. However, the stochastic differential equations
in equations (2) do not treat the position and momen-
tum variables equivalently, because the damping and noise
forces act to change only the momentum in the second
equation. We want to retain a symmetric treatment of the
two kinds of variables, by adding damping and noise terms
to the right-hand side of the first of equations (2). Such
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terms would mean, for example, that the velocity is not
exactly proportional to the momentum. However, it is not
clear a priori what terms to add, so one purpose of this
paper is to answer that question. In addition we will also
obtain the corresponding Fokker-Planck equation (FPE).

A recent paper [1] treats the related question of how to
obtain a form for Langevin EOMs and the associated FPE
that is manifestly canonically invariant. Our approach
does not have that same global viewpoint, but we are pur-
suing the idea that a phase space treatment should treat
the two sets of variables in the same way.

Our approach starts from a distinctive derivation by
Langer [2] of a Fokker-Planck equation. His method is very
general in one way, in that it treats an arbitrary set of
phase space variables; they could be local concentrations,
or magnetic moments, or canonical coordinates and mo-
menta, as we will consider them to be. But his method
is restrictive in another way, in that it treats a system in
contact with a heat bath in thermal equilibrium; as a con-
sequence the solutions of the obtained FPE always have
asymptotic approach to thermal equilibrium. For our pur-
poses this derivation is ideal because it treats all of the
phase space variables in the same way. When we com-
pare this FPE to the one obtained by the typical deriva-
tion from a Langevin equation, we are able to identify the
damping and random noise terms to add to the first of
equations (2).

2 Langer’s derivation of the Fokker-Planck
equation

This derivation is of course best explained in the original
paper (Ref. [2]), but we repeat some of it here to establish
notation and to emphasize features that are important for
our purposes. The derivation begins from consideration
of a general system described by a set of discrete phase
space variables {η} = (η1, η2, · · · ), whose precise physical
nature is not so important initially. In the application we
will make, these variables will be canonical displacement
and momentum variables. Therefore the index i runs from
1, . . . , 2N , where N is the number of degrees of freedom
of the system.

The statistical evolution of the phase space variables is
described by a phase space probability distribution func-
tion (PDF) ρ({η}, t). Langer supposes that the time evo-
lution of the PDF develops both from internal dynamics of
the system and from fluctuations created by interactions
with a heat bath. The total time rate of change is the sum
of these two effects,(

∂ρ

∂t

)
=
(
∂ρ

∂t

)
dyn

+
(
∂ρ

∂t

)
fluct

. (3)

The η variables are assumed to be canonical, so the
internal dynamics is described by Hamilton’s equations
obtained from an energy function H(η). These are

conveniently summarized by

η̇i =
2N∑
j=1

Aij
∂H

∂ηj
, (4)

where Aij is the symplectic matrix [3]

Aij =


δi+N,j i ≤ N,
−δi,j+N j ≤ N,
0, otherwise,

i, j = 1, · · · , 2N. (5)

The dynamical rate of change of the PDF is obtained in
the usual way from Liouville’s equation to be(

∂ρ

∂t

)
dyn

= −
2N∑
i=1

∂ρ

∂ηi
η̇i = −

2N∑
i,j=1

∂ρ

∂ηi
Aij

∂H

∂ηj
· (6)

We perform some transformations here to get this expres-
sion into a convenient form. Because of the antisymme-
try of Aij and the symmetry of ∂2H/∂ηi∂ηj , the quan-
tity ρ

∑
ij Aij∂

2H/∂ηi∂ηj is zero and can be added to the
right-hand side of equation (6). Then the dynamical rate
of change of the PDF can be written

(
∂ρ

∂t

)
dyn

= −
2N∑
i=1

∂

∂ηi

 2N∑
j=1

Aij
∂H

∂ηj
ρ

 . (7)

The evolution of the fluctuations induced by the heat bath
is described by a master equation(

∂ρ

∂t

)
fluct

=
∫ [2N∏

i=1

dη′i

]
[P ({η} ← {η′}) ρ({η′}, t)

−P ({η′} ← {η}) ρ({η}, t)] . (8)

Here P ({η} ← {η′}) is the rate at which transitions are
induced by the bath from configuration {η′} to {η}. The
details of the transition process are described by this rate
function. First, the bath is assumed to interact indepen-
dently with each phase space variable, so that

P ({η} ← {η′}) =
2N∑
i=1

2N∏
j=1,j 6=i

δ
(
ηj − η′j

)
Ri ({η} ← {η′}).

(9)

The function Ri embodies the important restriction that
the heat bath is in thermal equilibrium before each inter-
action with the system; therefore

Ri ({η} ← {η′}) =∫
ds
∫

ds′
1
ZR

exp [−ε(s′)/kBT ]Ti ((s, ηi)← (s′, η′i))

× δ (ε(s) +H({η})− ε(s′)−H({η′})) . (10)

In this equation T is the temperature and kB is Boltz-
mann’s constant, s denotes the state of the bath, ε(s) is
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the energy of that state, and ZR is the bath partition func-
tion. Ti is the transition rate between the states listed in
its arguments and is a symmetric function of those argu-
ments. There is an assumption of weak coupling between
the system and the bath built into equation (10), because
there is no interaction energy term between them included
in the argument of the energy-conserving delta function.
By using the conservation of total energy condition for
the system plus bath, we can manipulate the Boltzmann
factor in equation (10) into

Ri = exp
(
H ({η′})−H ({η})

2kBT

)
T̄i ({η} ← {η′}) , (11)

where the function T̄i is a symmetric function of its ar-
guments. Langer’s final assumption is that this transition
function can be modeled by a Gaussian,

T̄i({η} ← {η′}) = 2Γi
1

∆
√

2π∆
exp

[
− (ηi − η′i)

2

2∆

]
. (12)

The quantity ∆ is the mean-square jump size of the vari-
able ηi due to interaction with the bath. We assume that
∆ is small so that an expansion can be performed in
equation (8) up to second order in ∆. Then the integrals
in equation (8) can be done, and the constant ∆ disap-
pears (the details are in Ref. [2]). Only Γi, which describes
the rate of variation of ηi, remains to describe the details
of the jump process. The question of whether the Γi are
strictly constant or perhaps are temperature dependent is
left open at this point (see Sect. 5.2). The final result for
the bath-induced rate of change of the PDF is(

∂ρ

∂t

)
fluct

=
2N∑
i=1

Γi
∂

∂ηi

(
1

kBT

∂H

∂ηi
ρ+

∂ρ

∂ηi

)
. (13)

To complete the derivation we combine equations (3, 6, 13)
and find the total rate of change of ρ can be written as a
continuity equation in phase space,

∂ρ

∂t
= −

2N∑
i=1

∂Ji
∂ηi
· (14)

The components of the probability current density are

Ji =

 2N∑
j=1

Aij
∂H

∂ηj

 ρ− Γi
kBT

(
∂H

∂ηi
ρ+ kBT

∂ρ

∂ηi

)
,

i = 1, · · · , 2N. (15)

The final step here is for convenience rather than
for fundamental reasons. The thermal equilibrium PDF
ρ ∝ exp(−H/kBT ) should be a steady-state solution of
equation (14), and it is. But if we substitute this solution
into equation (15), from the first term we obtain a non-
zero but divergenceless current. By adding a second non-
zero, divergenceless term in equation (15), Langer makes
the current zero in equilibrium. The final expression for

the current components, to be used in subsequent analy-
sis, is

Ji =

 2N∑
j=1

Aij

(
∂H

∂ηj
ρ+ kBT

∂ρ

∂ηj

)
− Γi
kBT

(
∂H

∂ηi
ρ+ kBT

∂ρ

∂ηi

)
, i = 1, · · · , 2N. (16)

Equations (14, 16) are (one form of) Langer’s FPE. It
treats all of the phase space variables on an equal footing,
because it assumes that the deterministic evolution of the
phase space variables is governed by Hamilton’s equations
and because the interaction with the heat bath is intro-
duced in the same way for all variables. Because of the
assumption made in its derivation, that the heat bath is
in equilibrium at every interaction with the system, the
time-dependent solutions of this equation approach the
thermal equilibrium PDF as t→∞.

3 Generic derivation of the Fokker-Planck
equation from Langevin equations

Another approach to derive the FPE starts from stochastic
differential EOMs or Langevin equations. This derivation
is given in many places [4,5]. We have found the mono-
graph by Zinn-Justin [6] to be particularly useful.

The system is again assumed to be described by some
set of phase space variables ηi, i = 1, · · · , 2N . (There is
no actual requirement for the number of variables to be
even; we choose 2N here for comparison with the formulas
of the preceding section.) These variables are assumed to
evolve according to Langevin equations of the form

η̇i = fi({η(t)}) + νi(t), i = 1, · · · , 2N. (17)

The fi({η(t)}) are prescribed functions. The νi(t) are ran-
dom noise sources whose PDF ρν({ν}) is assumed to be a
multivariate Gaussian,

ρν({ν}) ∝ exp

[
−

2N∑
i=1

1
2Di

∫ ∞
−∞

dt ν2
i (t)

]
. (18)

The factorized nature of this PDF implies that the noise
at each point and time are independent random variables;
this property corresponds to the independence of the in-
teractions of the bath with each of the phase space vari-
ables expressed in equation (9). From equation (18) it is
straightforward to show that the average value and cor-
relation functions of the noise sources are given by the
familiar formulas,

〈νi(t)〉ν = 0,

〈νi(t)νi′(t′)〉ν = Diδii′δ(t− t′). (19)

(The subscript on the average is to indicate that these av-
erages are to be calculated with the PDF for the noise.)
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With this PDF one can also obtain the Novikov theo-
rem [7]: for any functional of the noise source F ({ν})

〈F ({ν})νj(t′)〉ν = Dj

〈
δF ({ν})
δνj(t′)

〉
ν

. (20)

The PDF for the dynamical variables is

ρ({η}, t) =

〈
2N∏
i=1

δ (ηi(t)− ηi)
〉
ν

, (21)

where the variables {η} are the coordinates of an arbitrary
point in phase space, and the functions ηi(t) are the solu-
tion of the Langevin equations for a specific realization of
the noise. The derivation of the EOM for the phase space
PDF begins by differentiating equation (21) with respect
to t, and then substituting from the Langevin equation for
the η̇i’s that appear. One then has an expression to which
the Novikov theorem can be applied. After some further
steps, which can be found in reference [6], we arrive at the
following FPE for the phase space PDF:

∂ρ({η}, t)
∂t

=

−
2N∑
j=1

∂

∂ηj

[
fj ({η}) ρ({η}, t)− 1

2
Dj

∂

∂ηj
ρ({η}, t)

]
. (22)

We note that without additional assumptions of certain
relations between the functions fj and the constants Dj ,
the time evolution of solutions of this equation is not con-
strained to approach thermal equilibrium.

4 Specialization to coordinate-momentum
variables

At this point we specialize to the system of our interest.
It is a system of particles with N degrees of freedom, and
the phase space variables divide into the sets of positions
xi and conjugate momenta pi:

ηi =

{
xi, i = 1, · · · , N,
pi−N , i = N + 1, · · · 2N.

(23)

We now have to specialize the two forms of FPEs obtained
in the preceding two section to this choice of variables.

4.1 Langer’s form

Corresponding to the categorization of the phase space
variables in equation (23), the probability current compo-
nents of equation (16) divide into two categories; the first
half are displacement components Jxi and the second half
are momentum components Jpi . Equation (14) becomes

∂ρ

∂t
= −

N∑
i=1

(
∂Jxi
∂xi

+
∂Jpi
∂pi

)
. (24)

In the expressions for the current components the rate
constants Γi could in principle be different for each of
the phase space variables. For our purposes it is suffi-
cient to have just two constants, one for the positions,
Γ (1), and one for the momenta, Γ (2). It is also necessary
to have two different constants, because they have differ-
ent dimensions: [Γ (1)] = (length)2/(time)2 and [Γ (2)] =
(mass)2(length)2/(time)3. Taking into account the defini-
tion of Aij in equation (5), we obtain the following formu-
las for the probability current components for this system:

Jxi =
(
∂H

∂pi
− Γ (1)

kBT

∂H

∂xi

)
ρ− Γ (1) ∂ρ

∂xi
+ kBT

∂ρ

∂pi
,

Jpi =
(
−∂H
∂xi
− Γ (2)

kBT

∂H

∂pi

)
ρ− Γ (2) ∂ρ

∂pi
− kBT

∂ρ

∂xi
· (25)

Finally we make one more restriction on the nature of the
system, that the Hamiltonian has the form

H =
N∑
i=1

p2
i

2M
+ Φ({x}). (26)

Then
∂H

∂pi
=
pi
M
, and − ∂H

∂xi
= − ∂Φ

∂xi
= Fi, (27)

the i-th component of the deterministic force. With these
results, the probability current components are

Jxi =
[
pi
M

+
Γ (1)

kBT
Fi

]
ρ− Γ (1) ∂ρ

∂xi
+ kBT

∂ρ

∂pi
,

Jpi =
[
Fi −

Γ (2)

kBT

pi
M

]
ρ− Γ (2) ∂ρ

∂pi
− kBT

∂ρ

∂xi
,

i = 1, · · · , N. (28)

4.2 Generic form

The Langevin equations in equation (17), when special-
ized to position and momentum variables, as we did at
equation (23), become

ẋi = fxi({x, p}) + ν̃
(1)
i (t),

ṗi = fpi({x, p}) + ν
(2)
i (t),

i = 1, · · · , N. (29)

Here ν̃
(1)
i is the same function as νi of Section 3 for

i = 1, · · · , N ; it is a a random noise source, with di-
mensions of length/time. ν(2)

i is the same as νi+N of
Section 3 for i = 1, · · · , N ; it is a random force. Simi-
larly, the generic FPE in equation (22) becomes the same
form as in equation (24), with the following formulas for
the currents,

Jxi = fxi({x, p})ρ−
1
2
D(1) ∂ρ

∂xi
,

Jpi = fpi({x, p})ρ−
1
2
D(2) ∂ρ

∂pi
,

i = 1, · · · , N. (30)
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Here we have restricted the constants Di (see Eq. (18)) to
two different values, one describing the coordinate noise
source and the other the momentum noise force.

4.3 Comparison

The comparison between the two different expressions for
the probability current densities in equations (28, 30), we
can identify the following terms:

fxi({x, p}) =
pi
M

+
Γ (1)

kBT
Fi,

fpi({x, p}) = Fi −
Γ (2)

MkBT
pi,

1
2
D(1) = Γ (1),

1
2
D(2) = Γ (2). (31)

We substitute the second of equations (31) into the second
of equations (29) and obtain

ṗi = Fi −
Γ (2)

MkBT
pi + ν

(2)
i (t). (32)

Then we compare this with the second of equations (2)
and obtain the relation between the damping constant in
the usual Langevin equation and the constants appearing
in Langer’s derivation of the FPE,

γ(2) =
Γ (2)

MkBT
· (33)

Now we define a new constant, with dimensions of
(time)−1, from the constants appearing in the first of
equations (31),

γ(1) =
kBT

MΓ (1)
· (34)

From equation (12) in Langer’s derivation of the FPE,
we see that for there to be no stochastic element in the
evolution of the xi variables, it is necessary that Γ (1) → 0.
From equation (34) this obviously translates to γ(1) →∞.

With the definition in equation (34) and the first of
equations (31), the first of equations (29) becomes

ẋi =
pi
M

+
1

Mγ(1)
Fi + ν̃

(1)
i (t). (35)

Next we multiply this equation through by Mγ(1) and
find that it is natural to define a second random force
function by

ν
(1)
i = Mγ(1)ν̃

(1)
i . (36)

The resulting equation here, along with the combination
of equations (32, 33), give the phase space Langevin equa-
tions with coordinates and momenta treated equivalently:

Mγ(1)ẋi = γ(1)pi + Fi + ν
(1)
i (t),

ṗi = Fi − γ(2)pi + ν
(2)
i (t),

i = 1, . . . , N. (37)

Equations (37) are the equations we are seeking, as de-
scribed in the Introduction.

Equation (19) gives the correlation function of the
noise sources in the generic form of the Langevin equation.
When the constants are specialized to the values obtained
in this section, using equations (19, 31, 33, 34, 36), these
correlation functions become〈

ν
(r)
i (t)ν(s)

i′ (t′)
〉
ν

= 2Mγ(r)kBTδrsδii′δ(t− t′),

i, i′ = 1, . . . , N ; r, s = 1, 2. (38)

One implication of equation (38) is that for large values
of the damping constants, γ(r) → ∞, the magnitudes of
the noise forces ν(r) increase proportionally to [γ(r)]1/2.

The final form of the FPE, obtained from
equations (14, 28) and the identification of the con-
stants in this section, is

∂ρ

∂t
=

−
N∑
i=1

{
∂

∂xi

[(
pi
M

+
1

Mγ(1)
Fi

)
ρ− kBT

Mγ(1)

∂ρ

∂xi
+ kBT

∂ρ

∂pi

]
+

∂

∂pi

[(
Fi − γ(2)pi

)
ρ−MkBTγ

(2) ∂ρ

∂pi
− kBT

∂ρ

∂xi

]}
.

(39)

In this equation, the force Fi is obtained from the potential
energy using the second of equations (27).

5 Consequences

5.1 Limiting cases

The “phase space” form of the Langevin equations in
equation (37) are novel because there are damping and
random force terms in both equations and because the de-
terministic force Fi appears in both equations. However,
in appropriate limits equations (37) reduce to two forms
of Langevin equations that are familiar.

The form where we started in equation (1) is ob-
tained by taking the limit γ(1) → ∞. We noted after
equation (34) that this limit removes the random forces
which act directly on the xi variables. The first of equa-
tions (37) simplifies to ẋi = pi/M (before taking the limit,
divide by Mγ(1) and recall that ν(1) increases proportion-
ally to [γ(1)]1/2 ), and the desired result is obtained on
substitution into the second of equations (37). The appro-
priate form of the FPE for this limit is

∂ρ

∂t
= −

N∑
i=1

{
∂

∂xi

[
pi
M
ρ+ kBT

∂ρ

∂pi

]
+

∂

∂pi

[(
Fi − γ(2)pi

)
ρ−MkBTγ

(2) ∂ρ

∂pi
− kBT

∂ρ

∂xi

]}
.

(40)
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Another important limit is obtained by letting γ(2) →
∞. In the second of equations (37) the dominance of the
damping term forces pi to zero very rapidly. Then, setting
pi = 0 in the first of equations (37) reduces it to the
overdamped form of the Langevin equation,

Mγ(1)ẋi = Fi + ν
(1)
i (t). (41)

To obtain the FPE appropriate for this limit, we divide
equation (39) by γ(2); the terms that remain when we take
γ(2) →∞ are∑

i

∂

∂pi

[
piρ+MkBT

∂ρ

∂pi

]
= 0. (42)

The normalizable solution of this equation is the Maxwell-
Boltzmann distribution for each momentum component.
Thus in this limit the phase space PDF is a product
of separate momentum and configuration factors with
the form

ρ({x, p}, t) = NMB exp

(
−

N∑
i=1

p2
i

2MkBT

)
ρc({x}, t)

≡ ρMB({p})ρc({x}, t), (43)

whereNMB is a normalization constant. We substitute this
form into equation (39) and obtain

ρMB
∂ρc

∂t
= −

N∑
i=1

{
pi
M
ρMB({p})∂ρc({u})

∂xi

+
1

Mγ(1)
ρMB

∂

∂xi
(Fiρc)− kBT

Mγ(1)
ρMB

∂2ρc

∂x2
i

− pi
M
ρMBρc

+
∂

∂pi

[
FiρMBρc − kBTρMB

∂ρc

∂xi

]}
. (44)

Next we integrate equation (44) over all of momentum
space. The terms proportional to piρMB({p}) integrate to
zero. The term with the derivative with respect to pi can
be integrated, and the result vanishes because ρMB van-
ishes at infinity. We obtain the following overdamped FPE
or Smoluchowski [8] equation:

∂ρc({x}, t)
∂t

= −
N∑
i=1

∂

∂xi

[
1

Mγ(1)
Fiρc −

kBT

Mγ(1)

∂ρc

∂xi

]
.

(45)

This reduction of the Fokker-Planck equation in phase
space to the Smoluchowski equation in configuration space
is shorter than the one usually given [9].

5.2 Temperature dependence

In equations (33, 34) we obtained relations between the
damping constants γ(i) that appear in the usual Langevin
equations and Langer’s constants Γ (i) that give the rate

of variation of the phase space variables induced by inter-
action with the heat bath. Here we want to point out
that it is not consistent to assume that both of these
sets of constants are temperature-independent. In many
computer simulations that have been carried out using
Langevin equations, it is common to assume that the γ(i)

(only one of them has been present in previous work) are
independent of temperature. In that case the Γ (i) must
be proportional to temperature. It seems natural that the
rate of variation induced by the heat bath should increase
with the temperature of the bath.

5.3 Example: The Kramers’ problem

One of the touchstone problems which has been analyzed
by use of the Fokker-Planck equation is the calculation
of escape rates from metastable states. The most quoted
early paper on the subject is probably by Kramers [10], al-
though it is evidently not the first [11]. In the interval since
Kramers’ paper an enormous literature on the subject has
been created. There are recent reviews on the subject to
which we refer for detailed summaries [12,13]. In its sim-
plest form, the problem concerns a single Brownian par-
ticle moving in a one-dimensional potential energy with a
well (minimum) and a barrier (maximum). The minimum
is located at x = xA, and the maximum at x = xB. Near
these two locations, the potential energy is approximated
by quadratic forms

U(x) =
1
2
Mω2

A(x− xA)2 + · · · , x ≈ xA,

U(x) = Eb −
1
2
Mω2

B(x− xB)2 + · · · , x ≈ xB; (46)

Eb is the barrier height, and ωA and ωB are positive. The
problem is to calculate the rate of escape from the well
over the barrier under the influence of the noise and damp-
ing forces.

The solution is obtained from the (one degree of free-
dom form of the) FPE in equation (40). Here we want
to give the solution as obtained from our FPE with
two damping constants (Eq. (39)). The solution is ob-
tained in exactly the same way as for the simpler FPE in
equation (40), and those details are described, for exam-
ple, in references [10,12]. Therefore we give just the answer
for the rate constant, which is

k(γ(1), γ(2)) =
1

2π
ωA

ωB


√[

1
2

(
ω2

B

γ(1)
+ γ(2)

)]2

+ ω2
B

+
1
2

(
ω2

B

γ(1)
− γ(2)

)}
e−Eb/kBT . (47)

As discussed in references [10,12], the method of solu-
tion of the FPE used to obtain equation (47) is valid
only for moderate and large damping. Familiar results are
obtained by taking limits on equation (47), similarly to
the discussion in Section 5.1. If we take γ(1) → ∞, then
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equation (47) reduces to Kramers’ result for moderate
damping,

k(∞, γ(2)) =
1

2π
ωA

ωB


√[

1
2
γ(2)

]2

+ ω2
B −

1
2
γ(2)


× e−Eb/kBT . (48)

And if we let γ(2) → ∞ in equation (47), then to first
order in 1/γ(2) and for arbitrary values of 1/γ(1) we get,

lim
γ(2)→∞

k(γ(1), γ(2)) =
1

2π
ωAωB

(
1
γ(1)

+
1
γ(2)

)
e−Eb/kBT .

(49)

Either term here is Kramers’ result for large damping.
With these two damping constants, the rate is essentially
determined by the larger term. Finally, the limit

lim
γ(2)→0

k(∞, γ(2)) =
1

2π
ωAe−Eb/kBT (50)

is the result of transition state theory [14].

6 Summary

By comparing two different derivations of the Fokker-
Planck equation, we have obtained Langevin equations
of motion for a mechanical system that have consistent
damping and noise forces in the equations for all the phase
space variables. These equations reduce in appropriate
limits to previously used forms of the Langevin equations.
The equations could be useful for performing dynamical
computer simulations of systems in contact with a
heat bath, because of the additional flexibility allowed by

the existence of two damping constants. For example in
simulations of lightly damped systems, the computer time
required to bring the simulation system to thermal equi-
librium can be excessive. With these equations, one could
set a value for γ(1) that would rapidly thermalize the
system, and then remove that damping source (γ(1)) →
∞) and continue the simulation with the desired small
value of γ(2). We plan to demonstrate the usefulness of
equations (37) in a forthcoming publication.
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